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Abstract - The quartz crystal microbalance (QCM) is a quartz crystal plate resonator for measuring
a minute mass in terms of the resonant frequency change. In some applications, an adsorbing layer
must be formed on the resonator surface, which adsorbs the material whose mass is measured. This
layer affects not only the resonant frequency but also its damping as it is viscoelastic. Its presence can
not simply be ignored but should be included in the modeling. In our previous work, the algorithm to
characterize the viscoelastic layer’s properties was developed, in which the multiple resonant frequencies
and the corresponding resonant resistances were considered including the overtone operation of the quartz
crystal plate [1]. It is unrealistic however to assume that the layer’s properties are unchanged for such a
wide frequency range. In the present paper, no overtone resonance is considered. Mass of the adsorbed
material and the thickness of the viscoelastic layer are identified by means of the Newton’s method.

1. INTRODUCTION
Quartz Crystal Microbalance, abbreviated to QCM, is a plate resonator made of quartz crystal operated
in thickness shear mode. A thin mass layer deposited on the surface of the QCM can be measured in terms
of the decrease of the resonant frequency. The ratio of the loading mass to the equivalent mass of the
plate resonator is proportional to the frequency change against the resonant frequency. The frequency is
the quantity most accurately measured, of the order of ∆f/f0 = 10−7∼−8. This corresponds to the mass
of the order of nano-gram in the case of standard QCMs of 9MHz. The QCM is widely used, such as, for
vacuum vapor deposition monitoring. Application is also extended to the characterization of biomedical
materials due to its extreme sensitive capability, in which the layer is selectively formed over a certain
layer provided on the surface of the QCM by the physical adsorption or chemical reaction. The operation
should also be assumed to the operation under watery atmosphere [2]. The viscoelastic layer that traps a
material to be measured is not always solid but sometimes viscoelastic [3]. It can be a lossy material and
its stiffness can be much smaller than that of the quartz crystal, of the order of one-tenth. Under this
circumstance, the more elaborate model and data must be considered. We again introduce a distributed
parameter model, which is solved for the impedance data measured at the electrical terminals, where the
thickness of the adsorbing layer and the mass of the adsorbed material are to be identified. The multiple
root finding technique based on the Newton’s method is utilized for parameter searching.

2. MODELS
Several types of modeling are possible for the analysis of the QCM responses. Two types are shown in
Figures 1 and 2.

Classical (lumped parameter) model Figure 1(a) shows a lumped parameter model. The model
is reasonable when the layer thickness is much shorter than the wavelength of the excitation, and the
loading layer moves totally in phase. The additional mass is identified due to the resonant frequency
shift. The resonant frequency is given as
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where f0(= 1/(2π)
√

K/M) is the resonant frequency of the plate resonator without mass loading, and
Maclaurin expansion is used for the approximation. The equivalent mass M is a half of total mass M0

of the plate for the lowest mode. The normalized frequency shift ∆f/f0 is
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When the frequency shift ∆f is measured, the mass is straightforwardly determined by

∆m = −∆f

f0
M0 (3)

ρm and `m as shown in Figure 1(a), are mass density and thickness of the additional layer. Figure 1(b)
shows an equivalent circuit representation, made of damped (shunt) capacitance, equivalent mass and
stiffness of the plate resonator, C0, M and K. Since the dissipation in the quartz crystal plate is so small
as to be negligible. Mechanical loss or damping in adsorbed mass can not be considered in this model.
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Figure 1. Classical (Lumped parameter) model.

Transmission-line (distributed parameter) model Figure 2 shows a distributed parameter model.
This model is utilized in the present paper. The viscoelastic layer deposited on the resonator surface can
also be modeled with a distributed lossy transmission line on the top surface of which a mass loading is
placed. The viscoelastic layer is not uniformly moving when the QCM is operating. In Figure 2(b), ZR

is the impedance, which is looked toward the deposited layer-mass loading system. That is given as

ZR = zm
jωms + zm tanh(γm`m)
zm + jωms tanh(γm`m)

(4)

where zm, `m, ms and ω are the characteristic impedance, the thickness of the viscoelastic layer, mass
loading adsorbed on the viscoelastic layer and angular frequency, respectively. γm is the propagation
constant, which is defined by the transmission-line theory [4] as

γm =
jω

√
ρm√

Gm + jω ηm
(5)

where ρm, Gm and ηm are mass density, shear modulus and viscosity of the layer, respectively. Zin is the
input impedance on the mechanical terminals in the equivalent circuit of the resonator as

Zin = z0
ZR + z0 tanh(γ0`0)
z0 + ZR tanh(γ0`0)

(6)

where z0, γ0, `0 are the characteristic impedance, the propagation constant and the thickness of the
resonator plate, respectively. This impedance Zin is in reality measured in terms of the electric impedance
at the electrical terminals. The resonant frequency can be determined as the frequency at which the
imaginary part of the input impedance Zin is zero. It is difficult to solve analytically for the resonant
frequency and resonant resistance. The solution could numerically be made using optimization technique
such as the Newton’s method.

When `m is very small, ZR is approximated to be

ZR = jω (ms + mm) (7)

where mm is the mass of the layer (mm = ρm`m). This is equivalent to the case when the lumped mass
loading ms + mm is provided on the surface.
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When no dissipation is considered and ms +mm is small, solving eqn.(6), for Zin = 0, the solution is,

ωm =
πz0

M0 + ms + mm
(8)

where ωm is the resonant frequency solution when mass loading ms + mm is provided. Normalized
frequency shift in this case is given as
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which is the same as the case of our classical lumped parameter model.
It should be noted that the transmission-line model leads the same result as that of the classical model

when the viscoelastic layer is very thin.
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Figure 2. Transmission-line (distributed parameter) model.

3. FORWARD ANALYSIS
We consider the case when the thickness of the layer is as thick as one quarter wavelength. Physical
parameters used in the present numerical simulation are shown in Table 1, where quality factor Q is
defined as Q = G/η, where η is the damping factor. The physical parameters Gm, ρm and ηm of the
viscoelastic layer are known, while `m and ms are to be determined from the measurement of the resonant
frequency and the resonant resistance.

Table 1. Physical parameters assumed.

Mass density
ρ [kg/m3]

Shear modulus
G [Pa]

Quality factor
Q

Thickness
` [m]

Wavelength
λ [m] for 9MHz

Resonator ρ0 : 2650 G0 : 2.87 × 1010 Q0 : 1 × 105 `0 : 0.18 × 10−3 λ0 : 0.36 × 10−3

Adsorbing
layer

ρm : 1000 Gm : 1 × 108 Qm : 1 × 102 `m : 0∼6 × 10−6 λm : 35 × 10−6

The resonant frequency shift ∆f0 = f0 − f0|ms=0 and resonant resistance shift ∆R = R − R|ms=0

curves are shown in Figure 3 for the layer thickness `m from 0µm to 6 µm.
Figure 3 shows that both ∆f0/f0 and ∆R depend on `m, the thickness of the adsorbing layer. The

sensitivities, the gradients of ∆f0/f0 and ∆R become higher as the thickness of the adsorbing layer
increases, and the curves are both not straight.
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Figure 3. Forward analysis.

4. PARAMETER ESTIMATION
In the actual application, ∆f0 and ∆R are both given by the measurement. The unknown parameters
are the thickness of the layer `m and the adsorbed mass ms. If it is assumed that ∆f0 and ∆R change
independently, the parameters `m and ms can be determined from the measured values of ∆f0 and ∆R.

Figure 4 shows the relation of ms to `m, when both resonant frequency shift and the resonant resistance
shift are known. Suppose we have obtained the measured values for ∆f0 = −1 kHz and ∆R = 0.2 kΩ. The
unknown values `m and ms are uniquely determined from measured values ∆f0 and ∆R at least within
the plotted range. From the crossing point, we have the solutions, `m ' 4µm and ms ' 3× 10−4 kg/m2.

To obtain the solutions, in reality, these crossing points should quickly be searched, which is made
here by using the multiple root finding algorithm based on the simple Newton’s method. This algorithm
is used for solving the equation, y(x) = 0, where y(x) is a vector function of a parameter vector x.

In the present case, the vector function y consists of error functions so that

y = {ferr, Rerr}T (10)

where error functions ferr and Rerr are chosen to be

ferr = ∆f0 − ∆f̂0

Rerr = ∆R − ∆R̂
(11)
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Figure 4. The relation between the thickness of the adsorbing layer `m and the adsorbed mass ms for
the resonant frequency shift ∆f0 and resonant resistance shift ∆R.

The values with a hat (ˆ) indicate the exact values. The parameter vector x is taken to be

x = {`m,ms}T (12)

The iteration is complete when ||y|| becomes small enough.
In the simulation, forward solutions are used for the “measured” values. The values of `m and ms

are assumed to be 3 µm and 5×10−4 kg/m2 respectively. The initial values are set to {`m, ms}T =
{2, 3 × 10−4}T . The solution is successfully found after 7 iterations as shown in Figure 5. The solution
path is indicated by “Path 1”.
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If smaller initial values are set to be {`m, ms}T = {0.1, 0.1× 10−4}T , however, the process is likely to
diverge. This is because ferr and Rerr is almost flat in that vicinity. In order to provide more stable search
process avoiding such a divergence, limited step size ||∆x|| must be devised. With such a modification,
the search process converges toward correct values as “Path 2” shown in the figure. Inverse search is
correctly carried out in all cases for the range from 2 to 6 for `m and from 2 to 10 for ms.

Figure 6 includes the case when the much higher initial values are set to be {`m,ms}T = {15, 1 ×
10−4}T . The combinations of `m and ms are shown by ‘+’ signs numbered. Convergences are all
completed but come to the false places with corresponding numbers. This is due to the fact that there is
another crossing point that satisfies ferr = Rerr = 0 in the higher range of the thickness, out of the range
shown in Figure 4.

Figure 7 shows the trace of a case in which two pattern of the convergence paths are shown. With
the initial values {`m,ms}T = {0.1, 0.1 × 10−4}T , path 1 successfully approaches to the true values,
while path 2, starting with another initial values {`m,ms}T = {15, 1 × 10−4}T , approaches to the
another values {`m, ms}T = {17.3, 0.268 × 10−4}T . The second one belongs to another higher mode
of resonances. The areas corresponding to valid and invalid initial value combinations are shown in the
same figure. Here, “Valid” means initial values that leads to true values, and “Invalid” means ones that
leads to incorrect values. According to this figure, smaller initial values may lead to correct true values
as long as it does not diverge.

5. CONCLUSIONS
A QCM system is modeled with a transmission-line (distributed parameter) model, in which the effect
of the viscoelasticity of the adsorbing layer provided on the plate surface is included. The mass of the
material adsorbed on the viscoelastic adsorbing layer is identified simultaneously with the layer’s thickness
by means of a simple Newton’s method. In the simulation, the forward analysis solution is used for the
“measured” data, which are the resonant frequency shift ∆f0 and the resonant resistance shift ∆R for
the various thickness of the adsorbing layer `m and the various adsorbed mass ms.

In reality, `m and ms are to be estimated from the “measured” values of ∆f0 and ∆R. This inverse
process was made using the multiple root finding technique based on the Newton’s method. The esti-
mation is successfully carried out provided that a proper choice of the initial values are made. With
inadequate initial values, the estimation process may converge to incorrect values, which also satisfies the
conditions of the error functions ferr = Rerr = 0.
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